Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity.
نویسندگان
چکیده
Responses to exchange transfusion with red blood cells (RBCs) containing methemoglobin (MetRBC) were studied in an acute isovolemic hemodiluted hamster window chamber model to determine whether oxygen content participates in the regulation of systemic and microvascular conditions during extreme hemodilution. Two isovolemic hemodilution steps were performed with 6% dextran 70 kDa (Dex70) until systemic hematocrit (Hct) was reduced to 18% (Level 2). A third-step hemodilution reduced the functional Hct to 75% of baseline by using either a plasma expander (Dex70) or blood adjusted to 18% Hct with all MetRBCs. In vivo functional capillary density (FCD), microvascular perfusion, and oxygen distribution in microvascular networks were measured by noninvasive methods. Methylene blue was administered intravenously to reduce methemoglobin (rRBC), which increased oxygen content with no change in Hct or viscosity from MetRBC. Final blood viscosities after the entire protocol were 2.1 cP for Dex70 and 2.8 cP for MetRBC (baseline, 4.2 cP). MetRBC had a greater mean arterial pressure (MAP) than did Dex70. FCD was substantially higher for MetRBC [82 (SD 6) of baseline] versus Dex70 [38 (SD 10) of baseline], and reduction of methemoglobin to oxyhemoglobin did not change FCD [84% (SD 5) of baseline]. P(O2) levels measured with palladium-meso-tetra(4-carboxyphenyl)porphyrin phosphorescence were significantly changed for Dex70 and MetRBC compared with Level 2 (Hct 18%). Reduction of methemoglobin to oxyhemoglobin partially restored P(O2) to Level 2. Wall shear rate and wall shear stress decreased in arterioles and venules for Dex70 and did not change for MetRBC or rRBC. Increased MAP and shear stress-mediated factors could be the possible mechanisms that improved perfusion flow and FCD after exchange for MetRBC. Thus the fall in systemic and microvascular conditions during extreme hemodilution with low-viscosity plasma expanders seems to be, in part, from the decrease in blood viscosity independent of the reduction in oxygen content.
منابع مشابه
Microvascular pressure and functional capillary density in extreme hemodilution with low- and high-viscosity dextran and a low-viscosity Hb-based O2 carrier.
Blood losses are usually corrected initially by the restitution of volume with plasma expanders and subsequently by the restoration of oxygen-carrying capacity using either a blood transfusion or possibly, in the near future, oxygen-carrying plasma expanders. The present study was carried out to test the hypothesis that high-plasma viscosity hemodilution maintains perfused functional capillary ...
متن کاملUse of Human Polymerized Hemoglobin Solution to Augment Acute Normovolemic Hemodilution, Replace Surgical Blood Loss, and Manage Acute Postoperative Blood Loss for a Jehovah's Witness
Significant progress has been made in the development of oxygen-carrying hemoglobin solutions for therapeutic use. Religious objection to donor red blood cells in the setting of perioperative blood loss and anemia is one of several potential uses of these products. Here we present a case in which a polymerized hemoglobin solution was used on a compassionate care basis to augment acute normovole...
متن کاملThe Optimal Oxygen Equilibrium Curve : A Comparison Between Environmental Hypoxia and Anemia
SYNOPSIS. Internal hypoxia in vertebrates occurs during anemia, when blood oxygen (O2) carrying capacity is reduced, or during exposure to environmental hypoxia. In non-altitude adapted vertebrates, exposure to environmental hypoxia results in a change in blood O2 affinity which, in some cases is beneficial to tissue O2 delivery. In contrast, the elevation in blood O2 carrying capacity observed...
متن کاملTissue oxygenation after exchange transfusion with ultrahigh-molecular-weight tense- and relaxed-state polymerized bovine hemoglobins.
Hemoglobin (Hb)-based O(2) carriers (HBOCs) constitute a class of therapeutic agents designed to correct the O(2) deficit under conditions of anemia and traumatic blood loss. The O(2) transport capacity of ultrahigh-molecular-weight bovine Hb polymers (PolybHb), polymerized in the tense (T) state and relaxed (R) state, were investigated in the hamster chamber window model using microvascular me...
متن کاملThe "tissue" tension of oxygen and its relation to hematocrit and erythropoiesis.
A N ADEQUATE SUPPLY OF OXYGEN to the individual cell in a multicellular organism is dependent on a circulatory system by means of which oxygen, reversibly bound to various pigments, is transported from an uptake organ to the capillaries of the tissues. From these capillaries, oxygen diffuses to the cell via the capillary wall, the extracellular water, and the cellular membranes. An adequate sup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 291 2 شماره
صفحات -
تاریخ انتشار 2006